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1. Introduction

Over the last year, a framework for the determination of the classical spectrum of BPS

branes of IIA string theory on Calabi-Yau varieties has been developed, valid throughout

the compactification moduli space (see [1] for the state of the art of this program and an

extensive list of references). One of the main ingredients of the emerging picture is that

we can think of the BPS spectrum as boundstates of a finite number of “parton” branes

(e.g., fractional branes near an orbifold, L = 0 boundary states at a Gepner point). These

parton branes are rigid, in the sense that they have no moduli space. Mathematically, they

provide a basis for the K theory of the Calabi-Yau. There has been much work devoted to

a better understanding of this finite set of branes for different compactifications, and the

determination of their large volume charges [2 – 9].

Among the many applications of D-branes on Calabi-Yau manifolds, a specially fruitful

one has been the derivation of many non-trivial nonperturbative results of N = 2 quantum

field theories [10, 11], building on earlier work [12]. By suitably choosing a local compact-

ification geometry and taking a decoupling limit, one can study a host of field theories

with different gauge groups and matter content. This philosophy has come to be known as
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“geometric engineering of quantum field theories” [13], and it has a number of advantages:

it is very systematic, gives a rationale for the unexpected appearance of geometrical objects

in the Seiberg-Witten [14] solution of these theories, and allows the study of new theories

without a known Lagrangian formulation.

In the present paper we relate recent developments in the study of D-branes on Calabi-

Yau manifolds with the BPS spectrum of N = 2 field theories. The essential idea is the

following; for concreteness, we will consider the case of pure SU(N) SYM. Recall that along

the moduli space of N = 2 SU(N) SYM, there is a set of N(N−1) monopoles or dyons that

can go massless, and we can pick up 2(N−1) of them to form a basis of vanishing cycles [15].

We claim that these 2(N − 1) potentially massless dyons constitute another example of

“partons”, and the rest of the spectrum can be thought of as boundstates of them. For

instance, for SU(2), the monopole and the fundamental dyon that go massless in the strong

coupling constitute such a set of “partons”, and the W+ and the tower of dyons present in

the weak coupling appear as boundstates of monopoles and fundamental dyons. From the

string theory point of view, this amounts to a shift in perspective with respect to geometric

engineering: the starting point of geometric engineering is given by a IIA compactification

on a geometry of 2-cycles, and D2-branes wrapping about them, that correspond to the

perturbative (electric) degrees of freedom of the field theory. Here, we compute the BPS

spectrum in the non-geometric phase of the string theory compactification; in particular,

we identify the parton branes, which correspond to D4-branes wrapping 4-cycles, with the

basis of vanishing cycles in the field theory, so we obtain a description of the field theory

spectrum in terms of magnetic degrees of freedom.1

Our strategy is the following: we start by identifying an orbifold point C
3/Z2N in

the moduli space of the non-compact Calabi-Yau used to geometrically engineer SU(N).

Once we have the worldvolume theory of the branes at that orbifold, we can in principle

determine the BPS spectrum of that compactification. As explained in [16, 4, 17] near the

orbifold this is a two step process: if we have a set of k different kinds of “partonic” branes,

first we have to determine for which values of (n1, . . . , nk) there is a vacuum configuration,

compatible with the superpotential, breaking the original gauge group U(n1)×· · · ×U(nk)

down to U(1). If there is such a configuration for (n1, . . . nk), then a boundstate of n1 times

the first parton, n2 times the second parton and so on, can exist somewhere in moduli space.

The second part of the procedure is to find where in moduli this state exists. The answer

depends on the Fayet-Iliopoulos terms and goes by the name of θ-stability [18, 16].

As we will show, in a particular neighborhood of the orbifold, we are able to identify

the spectrum of BPS branes with the BPS states of the SU(N) SYM field theory. The

strong coupling spectrum of these field theories was recently derived by Lerche [19], by

considering boundary states of a Gepner model in the mirror Calabi-Yau.

It is clear from particular examples [4], that once we move sufficiently away from the

orbifold, it is generically not true that the BPS spectrum can be described as boundstates

of positive numbers of fractional branes. The reason is the following: each fractional brane

1This is always on the type IIA side. In the mirror type IIB side, the electric magnetic duality of the

theory is manifest, as D3 branes correspond to both electric and magnetic particles in the field theory.
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has a central charge whose phase determines which particular N = 1 supersymmetry

is preserved, from the bulk N = 2. The crucial claim is that boundstates of different

fractional branes can be described by a (softly broken) N = 1 theory, even though each

fractional brane in the boundstate may have different phase for the central charge. At

the orbifold point, all the central charges of the fractional branes are parallel, so in the

neighborhood of the orbifold the differences among the phases is small and the previous

claim is justified. As we move away from the orbifold, eventually the phases of the central

charges differ significantly, and we can encounter boundstates of branes that at the orbifold

had antiparallel central charges.2 In the light of these remarks, it is not a priori obvious

that an analysis near the orbifold should suffice to recover the field theory spectrum. A

better understanding of why this is the case would require considering the periods of these

Calabi-Yau backgrounds.

The organization of the paper is the following. In section 2, after briefly recalling the

Calabi-Yau used for the geometric engineering of SU(N), we describe an orbifold point in

the moduli space of that Calabi-Yau, and derive the worldvolume theory of the D-branes

at that orbifold. Our next task is to obtain the spectrum of classical boundstates arising

from that worldvolume theory, and discuss the jumps in the spectrum that take place near

the orbifold; that we do in section 3, and in section 4 we compare our results with the

spectrum of SU(N) and the known lines of marginal stability. In section 5, we state our

conclusions.

2. N = 2 SU(N) SYM and fractional branes

In this section we identify a non-compact orbifold, C
3/Z2N , as the non-geometric phase

of the local IIA Calabi-Yau compactification used for the geometric engineering of N = 2

SU(N) SYM [13]. Once we have identified that orbifold, we can use the techniques of [20] to

derive the N = 1 worldvolume theory for branes on that geometry. In subsequent sections,

we will analyze the spectrum of boundstates of those theories.

2.1 Geometric engineering of SU(N)

It will be useful to recall the setup for the geometric engineering of SU(N).3 The starting

point is to consider an AN−1 singularity in six dimensions, since at this singularity, type

IIA develops an enhanced SU(N) gauge symmetry. Next, we want to compactify down to

four dimensions, breaking half of the supersymmetry on the way. To accomplish this, we

fiber the AN−1 singularity over a base P
1. Recall that a AN−1 singularity can be thought

of as a C
2/ZN orbifold blown up by N − 1 P

1’s. We will denote this geometry of N − 1

P
1’s fibered over a base P

1 by X.

Since we are interested in extracting field theory results from this compactification of

string theory, we need to decouple the effects of gravitational and massive string excitations.

2The natural way of keeping track of this possibility is by considering the derived category of the category

of quiver representations [1]. This introduces a (useful!) redundancy in the description, and in this sense

resembles a gauge symmetry.
3For reviews on geometric engineering, see [21, 15, 22].
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This amounts to taking the limit where the size of the base P
1 goes to ∞, whereas the

sizes of the P
1’s in the fiber go to zero. This keeps finite the mass of the W± bosons,

which arise from D2-branes wrapping the 2-cycles of the fiber P
1’s. On the other hand, the

magnetically charged states in the field theory arise from branes wrapping 4-cycles, and

in the limit that the volume of the base is sent to infinity, these states decouple from the

perturbative theory.

Ultimately, we are interested in the vector moduli space of this compactification, and

for this purpose it is crucial to consider type IIB on the mirror geometry X̂. The reason

for this is that, while for both type IIA on X and type IIB on X̂, the vector moduli space

is free of quantum string corrections (as in both cases the dilaton sits in a hypermultiplet),

on the type IIA side we would have to deal with world sheet instanton corrections, whereas

on the type IIB side there are no such corrections. An easy way to understand this is to

note that the vector moduli space for type IIB encodes the size of the 3-cycles of X̂, and

neither the fundamental strings nor the IIB BPS D-branes can wrap a 3-cycle to produce

an instanton. Therefore, a purely classical description of type IIB on X̂ encodes all the

nonperturbative physics of the quantum field theory.

It is convenient to describe this geometry by a two dimensional linear sigma model [23].

This description, or more precisely, the equivalent toric diagram, will be specially helpful

to determine the non-geometric phase. As we just reviewed, for SU(N) with no matter,

we have to consider IIA on a AN−1 ALE singularity fibered over a P
1. For each 2-cycle we

introduce a U(1), and since we have a P
1 in the base and N − 1 P

1’s as fibers, the gauge

group will be U(1)N . The matter content is given by N + 3 chiral fields, whose charge

vectors with respect to the N U(1)’s are

vb = (1, 1,−2, 0, 0, . . . , 0)

vf1
= (0, 0, 1,−2, 1, . . . , 0)

...

vfN−1
= (0, 0, 0, . . . , 1,−2, 1)

The geometry under consideration does not have odd cycles, and this translates into

not having a superpotential in the linear sigma model. The toric diagram has vertices

given by

νi =



















0 1

0 −1

0 0

1 0
...

...

N 0



















This is displayed in figure 1 for SU(3). The N − 1 interior points correspond to the

N − 1 compact divisors.
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2.2 The orbifold limit

Figure 1: The toric diagram for

SU(3).

So far, we have described the standard way to extract

N = 2 SU(N) SYM from a Calabi-Yau. An important

ingredient is that the charged spectrum of the field the-

ory appears from considering branes wrapping cycles of

a Calabi-Yau, a topic which has received a lot of atten-

tion lately.4 One of the central ideas in the emerging

framework is that the whole spectrum of BPS states can

be thought of as boundstates of a finite set of branes. We

would like to determine this set of “parton” branes for

the geometry just described, and relate it with the spec-

trum of SU(N) N = 2 SYM. To do so, we need to go to a point in the moduli space of this

geometry where we have a handle on the spectrum of BPS D-branes and their worldvolume

theories. To accomplish this, we take a different limit that the one just described: keeping

the P
1’s in the fiber blown down, we shrink the size of the base P

1 of X. Formally, in the

tb → −∞, we reach a solvable point. The resulting non-geometic phase can be described

as follows [26]:5 take the vertices of the toric diagram in Z
3, (0,−1, 1), (0, 1, 1), (N, 0, 1),

and equate the corresponding monomials to (1, 1, 1)

(tN3 , t−1
1 t2, t1t2t3) = (1, 1, 1)

the solution t1 = t2 = ε, t3 = ε−2, with ε2N = 1 describes the orbifold C
3/Z2N with

spacetime action given by

(z1, z2, z3) → (e
2πi

2N z1, e
2πi

2N z2, e
−2 2πi

2N z3)

This orbifold is the point in the moduli space of the geometry X we are going to

focus on.6 There are 2N fractional branes at this orbifold point, and they constitute what

we call the basis of parton branes for the BPS spectrum for this compactification. To

better understand the relation of this orbifold with the geometry we started with, an AN−1

fibration over P
1, we can study the homology of this orbifold. If we denote the generator

of Z2N by g, the action of the kth element of Z2N is

gk : (z1, z2, z3) → (ek 2πi

2N z1, e
k 2πi

2N z2, e
−2k 2πi

2N z3)

There is a complex line of C
2/Z2 singularities, (0, 0, z3), caused by gN . We can compute

the orbifold cohomology following [27], and the twisted sector contribution is h1,1 = N ,

h2,2 = N . However, one of the elements of h1,1, the one coming from the gN twisted sector,

is not a normalizable form on the resolved space, so as in [3], we conclude that it does not

correspond to a compact 4-cycle. All told, we have N 2-cycles and N −1 compact 4-cycles,

4see [24] and [25] for overviews on the physics and the mathematics involved, respectively.
5We arrived to this result by different arguments than those presented here. I am indebted to S. Katz

for explaining this method to me, and for providing me with the lecture notes [26] prior to publication.
6The reason we obtained an orbifold is that the toric diagram we started with was simplicial [26].
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which indeed matches the homology of AN−1 fibered over P
1. The picture is then that for

each point in (0, 0, z3) we have a P
1, forming a non-compact 4-cycle C × P

1, but at the

origin (0, 0, 0) there are extra shrunk cycles.

What is the relation between this orbifold and the field theory?7 The vector moduli

space of this string compactification is N complex dimensional, whereas the moduli space

of the corresponding field theory is N − 1 complex dimensional, and can be regarded as

a hypersurface in the former one. In particular, the orbifold point we just described is

not sitting in the moduli space of the field theory, and one might worry that, starting at

the orbifold, by the time we get to the hypersurface that corresponds to the field theory,

the phases of the central charges have changed enough as to render the quiver theory ap-

proximation invalid. We should then consider the flow of the gradings and the derived

category [1] to study the spectrum. A better understanding of why a particular neighbor-

hood of the orbifold reproduces the expected spectrum of the field theory would require a

full analysis of the moduli space and periods of this string theory compactification.

Another point to take into account is that as we shrink the base P
1, we open the

possibility for D2 branes to wrap that 2-cycle, yielding new W± not present in the weak

coupling. The appearance of this nonperturbative SU(2)base in the strong coupling limit

of geometric engineering of SU(N) was discussed in [11, 21], building on earlier work [28,

29]. When we compare the spectrum of this string theory compactification with that

of the SU(N) field theory, we have to identify which fractional branes wrap the 2-cycle

corresponding to the shrunk P
1
base

and discard them from our discussion.

2.3 The worldvolume theory

Finally, we are ready to derive the N = 1 theory of the branes at the orbifold. To do

so, we apply the techniques introduced in [20]. Recall that in an orbifold C
n/Γ, there is

a 1-to-1 correspondence between fractional branes and irreducible representations ri of Γ.

In the present case we have |Γ| = 2N different fractional branes; if we want to consider a

configuration with n1 fractional branes of the first kind, n2 fractional branes of the second

and so on, we need to take as representation R =
∑

i ni ri. The result is a N = 1 theory,

with gauge group U(n1)× · · · × U(n2N ), 2N chiral fields Xi,i+1 transforming in (ni, n̄i+1),

2N chiral fields Yi,i+1 transforming in (ni, n̄i+1), and 2N chiral fields Zi,i−2 transforming

in (ni, n̄i−2).

This is represented in figure 2 for the N = 3 orbifold, C
3/Z6. The superpotential of

the gauge theory is given by the usual reduction of the original N = 4 one,

W = tr

2N
∑

i=1

(Xi,i+1Yi+1,i+2 − Yi,i+1Xi+1,i+2)Zi+2,i

which leads to the F-flatness conditions

Xi,i+1Yi+1,i+2 = Yi,i+1Xi+1,i+2

Zi+2,iXi,i+1 = Xi+2,i+3Zi+3,i+1

Zi+2,iYi,i+1 = Yi+2,i+3Zi+3,i+1 (2.1)

7I would like to thank D.E. Diaconescu and C. Vafa for discussions on this point.
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In addition to the superpotential, the N = 1 world-

Figure 2: The quiver diagram for

the N = 3 orbifold.

volume theory admits Fayet-Iliopoulos terms for the 2N

U(1) factors, ζi, i = 1, . . . , 2N . These FI terms can be

written in terms of the NS twist fields via a discrete

Fourier transform [30]. In the previous subsection we

computed the orbifold cohomology, or put differently,

the RR ground states. The NS twist fields φk are re-

lated by supersymmetry, and in principle we have 2N

complex NS fields, 2 coming from the gN twisted sector,

and one from each of the remaining 2N-2 twisted sectors.

There is a reality condition, φk = φ∗
2N−k, so finally we

have N complex NS fields. These correspond to the N

complexified Kähler moduli. Now the FI terms can be

read from the coupling [30]
∑

k

∫

φkTr γ(gk)D

where D is the matrix of auxiliary fields. The outcome is that for N odd, we have

two relations
∑

k odd ζk =
∑

k even ζk = 0 whereas for N even, we only have one relation
∑

k ζk = 0. This comes about because for N odd Z2N = Z2 ×ZN , but the same is not true

for even N . The upshot is that we have 2N-2 FI independent terms for N odd and 2N − 1

for N even. In any case, we conclude that the D-branes can not explore the whole of the

Kähler moduli space, which is N complex dimensional.

What is the relation between the spectrum of this string compactification and the

spectrum of N = 2 SU(N)? To identify the fractional branes with states in the field

theory our guide will be the intersection matrix, Ia,b = Trab (−1)F [31, 2], since in the four

dimensional field theory, when the D-branes reduce to particles, Ia,b corresponds to the

Dirac-Schwinger-Zwazinger (DSZ) product.

Now, since the arrows in the quiver stand for (the bosonic partners) of fermionic

massless zero modes, one can suspect that it is possible to read off the intersection matrix

of the fractional branes of an orbifold from the quiver. Indeed, for an abelian orbifold

C
n/Γ with spacetime action zi → e

2πi

|Γ|
wizi, if we denote by g the |Γ| × |Γ| shift matrix, the

intersection matrix for the fractional branes is

Iab = Π (1 − gwi)

which for a Calabi-Yau n-fold (
∑

wi = 0 mod n), is completely symmetric or antisym-

metric depending on the parity of n. In our case,

Ia,b = (1 − g)(1 − g)(1 − g−2) = −2g + 2g−1 − g−2 + g2 (2.2)

What makes this intersection matrix relevant for our discussion is that it is exactly

(minus) the intersection matrix of vanishing cycles of SU(N), or put differently, the DSZ

product for a basis of the potentially massless dyons of SU(N), with magnetic and electric

– 7 –
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charges [19],






























[α1, 0]

[−α1, α1]
...

[αi, (i − 1)αi]

[−αi, (2 − i)αi]
...

[αN ,
∑

(1 − k)αk]

[−αN ,
∑

(k − 2)αk]































(2.3)

where αi, i = 1, . . . , N − 1 are the simple roots of su(N) and αN = −
∑

i αi. This

suggests that the fractional branes we found at the orbifold correspond, in the field theory

limit, to dyons whose magnetic charges are simple roots of the su(N) algebra, and whose

electric charges can be chosen as in (2.3). It was stablished in [32], that, at least in the

weak coupling, all the particles of SU(N) SYM have magnetic charge a root of the su(N)

algebra, and it seems quite natural that those whose magnetic charge is a simple root can

play the role of partons for the rest.

Note that for su(N) we have N − 1 positive simple roots, and indeed the Seiberg-

Witten solution for SU(N) is given in terms of a g = N −1 Riemann surface with 2(N −1)

independent 1-cycles [15]. To recover the states with negative magnetic charge, with respect

to these 2(N −1), we can choose to add two extra 1-cycles with αN , as in (2.3), or stick just

to a set of independent cycles and allow for negative coefficients. This last option is more

in the line of [4], where antiparticles near the orbifold came from quivers representations

with all the n’s negative. This leads us to identify 2(N − 1) of the 2N fractional branes

at the orbifold, with the independent vanishing cycles and the corresponding field theory

particles. Furthermore, the quiver formed by the two adjacent nodes that we take away

gives, by the Beilinson construction [33] , the coherent sheaves over

Figure 3: The

quiver diagram for

the N=3 orbifold.

P
1. Since the stable sheaves on P

1 can be identified with the BPS

spectrum of SU(2), it is reasonable to assume that these two 2 fractional

branes are charged under the base P
1, and we should discard them in

discussing the relation of the BPS D-brane spectrum with the SU(N)

spectrum. The upshot of this discussion is that we truncate the quiver gauge theory, cutting

out two adjacent nodes, and keeping 2N − 2 nodes.

The intersection matrix (2.2) has also appeared recently [19] in the study of a Gepner

point in the moduli space of the type IIB mirror geometry, X̂, to which we turn our

attention next.

2.4 The mirror picture

Recently, Lerche [19] considered a Gepner point in the moduli space of the type IIB geom-

etry X̂. It is claimed in [19] that that Gepner point corresponds to the origin of SU(N)

moduli space. This moduli space is N −1 complex dimensional, and at the origin there is a

Z2N global symmetry, uk → e
2πi

2N uk, where uk, k = 2, . . . , N are the Weyl coordinates [34].

The boundary states of that coset model are then identified with the BPS spectrum of

– 8 –
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N = 2 SU(N) SYM at strong coupling. The role of parton branes, played on the IIA side

by the fractional branes, is played here by the L = 0 A-type rational boundary states. The

starting point of [19] is a LG potential

W = xN +
1

z2N
1

+
1

z2N
2

−
N

∑

k=2

ukx
N−k(z1z2)

−k

where uk are coordinates for the N − 1 complex dimensional moduli space. In particular,

the point uk = 0 corresponds to the coset model

(

SU(2)N+2

U(1)
×

SL(2)2N+2

U(1)
×

SL(2)2N+2

U(1)

)

/Z2N

The main point of [19] was to prove that the A-type L = 0 rational boundary states of

this Gepner model have the same intersection matrix (2.2) than the basis (2.3) of vanishing

cycles of N = 2 SU(N) SYM. This follows if we grant that the factors in the intersection

matrix coming from the different minimal models, all diagonalize in the same basis, some-

thing that for the ordinary minimal models happens for the B-type boundary states [2]. It

would be interesting to derive this rule from a careful analysis of this coset model. Note

also that the mirror geometry X̂ does not have any even cycles. This should translate into

the fact that this coset model does not have any B-type boundary states.

3. The spectrum of BPS states near the orbifold

In the previous section, we derived the worldvolume theory for a configuration of

(n1, . . . , n2N ) fractional branes. The next question we would like to ask is in which cases

they form a BPS boundstate, and how the answer may change as we move in moduli space.

The general procedure was introduced in [16, 4], and explained in detail in [17], so here we

will be quite brief.

First, the criterion for having a boundstate is that the vevs of the chiral fields break

the original gauge group completely, except for the diagonal U(1), which is always present

for these theories, and will represent the center of mass motion.

The next thing that we require to the boundstates is that they are BPS. Away from the

orbifold, the general configuration of different fractional branes will break all supersymme-

try, as each preserves a different N = 1 subalgebra of the original N = 2. The claim is that

this supersymmetry breaking is quite a mild one, caused by a constant non-zero potential

coming entirely from D terms. In the language of θ-stability [18, 16] this means that for a

given set of values (n1, . . . , nk), we look for θ-stable configurations with the components of
~θ related to the physical FI terms ζ by

θi = ζi −
~n · ~ζ

~n · e
(3.1)

where e = (1, . . . , 1). The difference between ζi and θi gives precisely the constant shift in

the potential just discussed.
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The last ingredient in the picture is how the spectrum changes as we move in Kähler

moduli space. The field theory counterpart would be the determination of the lines of

marginal stability in the quantum moduli space. The answer depends entirely on the D

terms, as the holomorphic properties of the states, dictated by the superpotential of the

worldvolume theory, are independent of Kähler moduli. More concretely, near the orbifold,

θ-stability depends explicitly on Kähler moduli, through the FI terms. A criterion for

stability based on the periods of the Calabi-Yau, and therefore exact in α′, was presented

in [16]. Note that, as in geometric engineering, we need of mirror symmetry to provide the

exact periods if we want a complete discussion of the lines of marginal stability.

These ideas have a nice mathematical counterpart near the orbifold, known as quiver

theory, summarized in the following table

Worldvolume theory Quiver theory

F-flatness conditions Quiver with relations

Single boundstate Schur representation

“Quasi” susy vacuum θ-stable representation

Let’s briefly recall how to obtain the spectrum of boundstates. For more details, see

the appendix of [4]. For configurations with ~n = (n1, . . . , nk) fractional branes and where

the F-flatness conditions are trivially satisfied (by setting to zero some vev’s), the expected

dimension of the moduli space is

d(~n) = 1 −
1

2
~nT · C · ~n (3.2)

with C the generalized Cartan matrix associated with the quiver. This is quite easy

to understand; we count the number of parameters in the gauge group and subtract the

number of entries in the matrices representing the vevs of the chiral fields. We call imagi-

nary and real roots those ~n for which d(~n) ≥ 1 and d(~n) = 0, respectively. A Schur root is

an imaginary or a real root, but the opposite is not true, so after finding all imaginary and

real roots, we have to determine which ones of those are Schur roots. We are not aware of

a systematic procedure, but for our problem, it will be fairly easy to decide in many cases.

3.1 Range of validity

Before we embark in the study of the spectrum of classical (gs = 0) boundstates of this

compactification, we would like to discuss the range of validity of the quiver theory and of

θ-stability.

As mentioned in the introduction, a claim central to recent work on BPS D-branes

on Calabi-Yau manifolds [16, 4, 6, 1] is that these BPS states can be described by N = 1

theories, even though the constituent parton branes preserve different N = 1 supersym-

metries. At an orbifold point typically the central charges are real (the only contribution

coming from the B field at the singularity), so they are aligned. As we move away from

the orbifold, the central charges of the different fractional branes will be no longer aligned,

and eventually it can happen that two fractional branes A and B, that near the orbifold

had almost parallel central charges, now have them almost antiparallel, so at that point

– 10 –



J
H
E
P
0
2
(
2
0
0
6
)
0
6
5

in moduli space the possible boundstate is between A and B̄, the antibrane of B. This is

discussed in detail in [1]. By the time we reach this point, the quiver theory description

has broken down.

On the other hand, θ-stability is only valid at linear order in the FI terms, so it breaks

down as soon as the periods are no longer linear in the FI terms.

For the present case, we will show that the field theory particles correspond to BPS

states in the string theory that can be described with quiver theory, but θ-stability only

gives the lines of marginal stability somewhere near orbifold, and a complete stability

analysis would involve the full Π-stability condition.

3.2 The boundstates of the worldvolume theory

The truncated quiver with 2N − 2 nodes can be pictured more conveniently as

V1
-- V2

¾
¾

V3

6

-- V4

6

¾
¾

V5

6

-- V6

6
(3.3)

where the Vi are vector spaces for representations of the quiver. As we will see, it turns

out that all the states of the SU(N) SYM theory, can be identified with representations of

the previous quiver with the diagonal arrows set to zero,

V1
-- V2

V3

6

-- V4

6

V5

6

-- V6

6
(3.4)

There are definitely more boundstates in the former quiver, meaning that there are

BPS states in the string compactification that don’t appear in the SU(N) spectrum. We

will see that it is possible to choose the FI terms in such a way that there is a region near

the orbifold where these extra states are not present.

First, we are going to study the spectrum of boundstates when only the vertical arrows

have non-zero vev,

V2k−1
- V2k−3

- . . . - V1 (3.5)
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The F-flatness conditions are trivially satisfied in this case. The expected dimension

of the moduli space of the gauge theory is

d = 1 −
(

n2
1 + n2

3 + · · · + n2
2k−1 − n1n3 − · · · − n2k−3n2k−1

)

So the imaginary roots should satisfy

n2
1 + (n1 − n3)

2 + · · · + (n2k−3 − n2k−1)
2 + n2

2k−1 ≤ 0

and the real roots

n2
1 + (n1 − n3)

2 + · · · + (n2k−3 − n2k−1)
2 + n2

2k−1 = 2

We immediately see that there are no non-trivial imaginary roots. For the real roots,

the only possibility is that two summands are 1 and the rest 0. A moment’s thought shows

that all the solutions consist of a chain of adjacent ni = 1 and the rest of the nj’s set

to zero. For instance, if we have n1 = n3 = n5 = 1, it describes a boundstate with one

fractional brane of the first kind, one of the third and one of the fifth. Furthermore, these

representations break the gauge group to the diagonal U(1): we start with a gauge group

U(1)×U(1) × · · · ×U(1), and each nonzero vev breaks the two U(1)’s it transforms under

to their diagonal U(1). Therefore, they correspond to boundstates. In the next subsection,

we will identify these boundstates with the potentially massless dyons.

Next we consider configurations with only the vevs of a pair of horizontal arrows not

zero,

V1
-- V2 (3.6)

This is known in the math literature as the Kronecker quiver. The superpotential plays

no role and the spectrum of boundstates is actually well known [35] (see also the appendix

of [4]). The expected dimension of the moduli space is

d = 1 − (n2
1 + n2

2 − 2n1n2) = 1 − (n1 − n2)
2

so the imaginary Schur roots must satisfy

(n1 − n2)
2 ≤ 0 ⇒ n1 = n2

and actually only (1, 1) is a Schur root [36]. In the next section we will identify it as a

W+ boson with electric charge a simple root of su(N). All the real roots of this quiver are

Schur [35] , and they are given by

(n1 − n2)
2 = 1 ⇒ n1 = n2 ± 1

Later we will identify these states as the familiar towers of dyons with fixed magnetic

charge, when the magnetic charge is a simple root of the algebra.

Now we consider quiver representations with both the horizontal and the vertical rep-

resentations turned on. The F-flatness conditions are no longer satisfied automatically,

so we are in the realm of quivers with relations, and the methods we have been using no
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longer apply. Nevertheless, we will be able to display representations that satisfy F-flatness

and break the gauge group to U(1), corresponding to the expected positive charged gauge

fields and tower of dyons. We believe that those are the only Schur representations of

this quiver compatible with the superpotential, but we don’t have a proof of this claim.

Consider for concreteness states with magnetic charge given by α1 + α2. They correspond

to representations of

C
n1

X1 -

Y1

- C
n2

C
n1

Z1

6

X2 -

Y2

- C
n2

Z2

6

(3.7)

the F-flatness conditions (2.1) reduce to

Z1X1 = X2Z2 Z1Y1 = Y2Z2

If we take n1 = n2 = 1, and nonzero vevs, Z1 = Z2,X1 = X2, Y1 = Y2 we satisfy

the F-flatness conditions and break the gauge group to the diagonal U(1). These kind

of representations correspond to W+ bosons whose electric charge is a positive, but not

simple, root of the algebra. We can describe another solution: take n1 = n, n2 = n + 1

and X1 = X2 and Y1 = Y2 to be the Schur representation of the Kronecker quiver for

(n, n + 1), Z1 = IIn and Z2 = IIn+1. It is clear that the F-flatness conditions are satisfied,

and it also easy to see that this choice of vevs breaks the gauge group to the diagonal U(1):

originally we had U(n)×U(n+1)×U(n)×U(n+1). By construction X1, Y1 break the first

U(n)×U(n+1) to its diagonal U(1), and X2, Y2 do the same for the second U(n)×U(n+1).

Finally, both Z1 or Z2 break the U(1)×U(1) we had so far to the diagonal U(1). Therefore

we have a boundstate. We will identify them in the field theory with dyons whose magnetic

charge is a positive but not simple root of the algebra. Note that the presence of the F-

flatness conditions is crucial to avoid the presence of many unwanted states: we could

have considered a (n, n+1,m,m+1) representation, with the Schur representations of the

Kronecker quiver for the (n, n+1) and (m,m+1) and nonzero matrices Z1, Z2. This would

break the gauge group to U(1), but in general it does not satisfy the F-flatness conditions.

Finally, we can consider turning on the diagonal arrows of (3.3). As mentioned, states

with non zero vevs of these fields don’t appear in the SU(N) spectrum, but we don’t have a

a priori reason to discard them from our study. It is immediate that there are new states.

For instance, we can turn just a pair of diagonal arrows in (3.3),

V2
-- V3

and this is just a Kronecker quiver (3.6) , which has infinite boundstates. More than that,

turning on now just horizontal and diagonal vevs

V1
-- V2

-- . . . -- Vk (3.8)

there is always a solution satisfying the superpotential constraints, given by setting all the

ni = 1. We believe it is the only solution, but we don’t have a proof ot this claim.
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3.3 Subrepresentations and domains of stability

In the previous subsection, we have described the possible boundstates of branes we have

near the orbifold. To decide where in moduli space each of them is present, we have to

check where are they θ-stable. We present the computation for a number of examples.

Some of the novel notions of homological algebra that enter the generic picture of [16, 1]

are quite easy to understand in this limit.

We will look for subrepresentations and study the domains of stability. Let’s start with

the boundstates with only vertical arrows. As we just argued, all the non trivial vector

spaces at the nodes of the representations have dimension 1, so we will represent them by

C. For the sake of concreteness, let’s consider a boundstate of 3 fractional branes. Our

considerations generalize trivially. There are in this case two subrepresentations

C
' - C

' - C

0

0

6

0 - 0

0

6

0 - C

'

6

and

C
' - C

' - C

0

0

6

0 - C

'

6

' - C

'

6

The notation of these diagrams was introduced in [17]. The top row is the original

representation, and the bottom one is the subrepresentation. When the vev of a chiral

field is non-zero, we perform a complex gauge transformation to set it to the identity map,

denoted by '. Vevs not turned on are represented by the 0 map. By definition, there must

be an injective map from the subrepresentation to the original representation, denoted here

by the dashed vertical arrows. The commutativity of these diagrams is evident. In general,

for a boundstate given by a chain of k vector spaces C and k − 1 identity maps among

them, there will be k−1 subrepresentations, being embedded in the original representation

“by its end”, to ensure the commutativity of the diagram.

We can study now the domain of stability of these representations. Again for concrete-

ness, we focus in the particular example with 3 nodes. We introduce a vector (θ1, θ2, θ3),

which must satisfy n · θ = 0, which in this case reduces to θ1 + θ2 + θ3 = 0. Stability

against decay triggered by the first subrepresentation requires θ3 > 0, while the second

one requires θ2 + θ3 > 0 or equivalently, θ1 < 0. In the θ-plane we have then two lines of

marginal stability for this boundstate.

Let’s move now to the boundstates of the Kronecker quiver (3.6). First the imaginary
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root (the W+ boson) has a single subobject

C

' -

'

- C

0

0

6

0 -

0

- C

'

6

This representation is then stable for θ2 > 0. Next we should consider the subrepre-

sentations of the real roots of this quiver. Displaying them would require some work, as

now we are dealing with vectorspaces of arbitrary dimensions.

C
n -- C

n±1

Fortunately, if we just want to know the lines of marginal stability, we don’t need that

much. For quivers without relations, there is a theorem characterizing Schur roots, due to

Schofield [37], which will be quite useful for us. The generic theorem is explained in the

appendix of [4] , and in the present case it boils down to saying that (n1, n2) is a Schur

root iff all its subrepresentations (n′
1, n

′
2) satisfy n′

1/n
′
2 < n1/n2. Now consider a particular

Schur root (n1, n2), and introduce a vector (θ1, θ2) such that n1θ1+n2θ2 = 0. Then (n1, n2)

is θ-stable if n′
1θ1 + n′

2θ2 > 0, i.e., if θ2 > 0.

Finally, we will consider an example of the domain of stability for boundstates of (3.4),

when both horizontal and the vertical arrows are nonzero. For states (n, n+1, n, n+1) we

can have subrepresentations (m1,m2,m1,m2) such that (m1,m2) is a subroot of (n, n+1);

in particular m1/m2 < n/n + 1

C
n -- C

n+1

C
n --

- 6

C
n+1

-

C
m1

6

-- -- C
m2

6

C
m1

6

--

-

C
m2

6

-

We choose a vector ~θi such that n(θ1+θ3)+(n+1)(θ2+θ4) = 0. This representation is θ-

stable against (m,m+1,m,m+1) if m1(θ1+θ3)+m2(θ2+θ4) > 0. Using m1/m2 < n/n+1,
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we see that we must require θ2 + θ4 > 0. There is another possible subrepresentation that

can trigger a decay,

C
n -- C

n+1

C
n --

- 6

C
n+1

-

C
n

6

-- -- C
n+1

6

0

6

--

-

0

6

-

Note that we can’t place the 0’s in the other two nodes, for the diagram would not

commute. Physically this means that among the decay products, one of them (but not the

rest) are triggering the decay [16]. This subrepresentation imposes nθ1 + (n + 1)θ2 > 0 for

stability of the original representation.

4. Comparison with the N = 2 SU(N) SYM spectrum

In the previous section, we have derived the boundstates of fractional branes, and we

studied the jumps in the spectrum near the orbifold, by resorting to a simple linear analysis.

We would like now to compare with the results for field theory. This involves a number of

issues.

i) As already mentioned, for SU(N) we consider the truncated quiver with 2(N − 1)

nodes. The antiparticles are to be thought of as representations with all the n’s negative.

ii) We are going to show that a particular choice of FI terms, reproduces the strong

coupling spectrum: only the potentially vanishing states. Note that there are N(N − 1) of

those, not just the 2(N −1) corresponding to the basis of vanishing cycles. More than that,

varying the FI terms we will find new states that also have a counterpart in the field theory.

A better understanding of why this particular neighborhood of the orbifold reproduces the

expected spectrum of the field theory would require a full analysis of the moduli space and

periods of this string compactification.

4.1 SU(2)

In this case, we have two possible partons in the theory, and according to the identification

we proposed in section 2, they correspond to the monopole [1, 0] and the fundamental dyon

[−1, 1] that go massless in the Seiberg-Witten solution [14]. This amounts to assign to
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the boundstate (n1, n2) = n1[1, 0] + n2[−1, 1] = [n1 − n2, n2] magnetic and electric charges

given by8

qm = n1 − n2 qe = n2

The worldvolume theory corresponds to the Kronecker quiver and the spectrum is the

following: the imaginary root (1, 1); its charges are [0, 1], so we identify it with the W+

boson. Notice that the mathematical statement that there are no (k, k) boundstates, even

though they satisfy the dimension formula, corresponds to the statement that there are

no particles with charge [0, k] in SU(2) SYM. Next we have the real roots (n1, n1 ± 1).

Their charges are [±1, n1], and we recognize them as the tower of dyons with one unit of

magnetic charge.

What can we say about lines of marginal stability in this case? The physical moduli

space, in the linear approximation applied in this paper, has as coordinates the two FI terms

of the worldvolume gauge theory, ζ1, ζ2. For each (n1, n2) we introduce a vector (θ1, θ2).

In the previous section, we have performed the θ-stability analysis for these boundstates.

The result was that all of them decay when θ2 > 0. Now the relation (3.1) between the

physical FI terms ζi and the θi reads in this case

θ1 =
n2

n1 + n2

(ζ1 − ζ2) θ2 =
n1

n1 + n2

(ζ2 − ζ1)

So the condition θ2 > 0 for the different boundstates (n, n ± 1) translates into a

common condition in term of the FI terms, ζ2 > ζ1, even though the map between θ’s and

ζ’s changes for different boundstates. In other words, the linear analysis predicts that all

these states decay at the same line of marginal stability. This is precisely what happens for

the tower of dyons of SU(2)! [38]. This result has also been derived within the framework

of geometric engineering [10].

4.2 SU(3)

[1,n]

[0,1]

[1,0]

[-1,1]

ζ

ζ
1

2

Figure 4: Line of marginal stabil-

ity for the N=2 orbifold.

Already for SU(3), we are not aware of a detailed de-

scription of all the lines of marginal stability. A qual-

itative new feature is the presence in the moduli space

of points, Argyres-Douglas points [39], where mutually

non-local particles go massless. The spectrum of BPS

states near these points was studied in [40].

The truncated quiver has 4 nodes,

V1
-- V2

¾
¾

V3

6

-- V4

6

(4.1)

Let’s start listing the possible states: first we have the four fractional branes (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). They are identified with the basis of vanishing cycles.

8Our notation is as follows, (n1, n2) represents a boundstate of n1 monopoles and n2 fundamental dyons;

[qm, qe] represents a state of magnetic and electric charges qm and qe.
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The remaining two potentially massless dyons come from states with just the vertical arrows

turned on: (1, 0, 1, 0) and (0, 1, 0, 1). This is the set of N(N − 1) = 3 · 2 = 6 potentially

massless dyons.

The positively charged gauge bosons are also easily identified: they correspond to

bound states with the horizontal arrows turned on:(1, 1, 0, 0) and (0, 0, 1, 1) are the ones

with electric charge α1 and α2, and (1, 1, 1, 1) is the one with electric charge α1 + α2.

The towers of dyons with magnetic charges α1 and α2 are bound states of the Kronecker

quivers: (n, n±1, 0, 0) and (0, 0, n, n±1). For the positive non-simple root α1 +α2 we have

states described by (3.7) , (n, n± 1, n, n± 1). Finally, we have states that are not expected

in the field theory: (1, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1), (0, n, n ± 1, 0).

Let’s describe now the lines of marginal stability for the different states. Using the

results we obtained in the previous section, we see that the two potentially massless dyons

(1, 0, 1, 0) and (0, 1, 0, 1) are present in the spectrum as long as ζ1 > ζ3 and ζ2 > ζ4,

respectively. The W+ bosons with electric charges α1 and α2 exist as long as ζ2 > ζ1 and

ζ4 > ζ3, respectively. The W+ boson with electric charge α1 +α2 requires ζ1 + ζ2 > ζ3 + ζ4

and ζ2 + ζ4 > ζ1 + ζ3.

The towers of dyons with magnetic charge α1 and α2 are stable as long as ζ2 > ζ1

and ζ4 > ζ3. The dyons with magnetic charge α1 + α2 require ζ2 + ζ4 > ζ1 + ζ3 and

n(ζ1 − ζ3) + (n ± 1)(ζ2 − ζ4) > 0.

Finally the states that are not present in field theory, (1, 1, 1, 0), (0, n, n ± 1, 0) and

(0, 1, 1, 1) will appear when 3ζ3 > ζ1 + ζ2 + ζ3 > 3ζ1, ζ3 > ζ2 and 3ζ4 > ζ2 + ζ3 + ζ4 > 3ζ2,

respectively.

We see then that if we consider the region with ζ1 > ζ3, ζ2 > ζ3 and ζ2 > ζ4, we always

have the potentially massless dyons present in the spectrum and none of the states that

don’t appear in the field theory.

4.3 SU(N)

For generic SU(N), we have first the boundstates consisting of only “back two” chiral fields

(vertical arrows in (3.4)). Let’s count how many of them we have. First, we have the 2(N-

1) nodes. For each node except the last two, we have a boundstate of just two fractional

branes, i.e. involving a single arrow; there are 2(N-2) of those. Furthermore, there are

2(N-4) boundstates of 3 fractional branes, involving two arrows, and so on. All in all, there

are N(N-1) such boundstates. From the identification of the 2(N-1) fractional branes with

the basis of vanishing cycles, it follows that these N(N-1) boundstates are the spectrum

of potentially massless dyons. According to [19], this is the strong coupling spectrum of

SU(N) SYM. The correspondence of our boundstates with the rational A-type boundary

states of the Gepner model of [19] is quite clear: the nodes of the quiver are the L = 0

boundary states. The boundstates with a single arrow correspond to the L = 1 boundary

states, the ones with two arrows are the L = 2 boundary states, and so on.

A very similar counting, but now of representations with horizontal arrows turned on,

yields N(N−1)/2 postively charged gauge bosons. Note that this analysis can’t recover the

neutral gauge bosons of the field theory as they don’t arise from branes wrapping cycles.
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On top of these states, we also have as potential states in the spectrum all the bound-

states with the “forward one” arrows. When there are only two nodes, they give the tower

of dyons for the different simple roots of the algebra. When we have more than one pair of

horizontal arrows, we obtain the tower of dyons for positive non-simple root. The analysis

of the domains of stability of the different states, could be carried out as for SU(3). In par-

ticular, if we take our FI terms satisfying ζi > ζi+1, the only states present in that region

are the potentially massless dyons, so in this negihboorhod of the orbifold the spectrum

coincides with the expected BPS spectrum of the field theory.

5. Conclusions

In this paper we have related some of the ideas that have been recently brought up in the

study of BPS branes on Calabi-Yau varieties to the more familiar setting of N = 2 field

theories. To do so we started with the Calabi-Yau geometry used to geometrically engineer

pure SU(N) SYM, and considered the non-geometric phase, an orbifold. The advantage

of studying this phase is that it is then very easy to obtain a set of branes that constitute

a basis for the K-theory of the Calabi-Yau, namely the fractional branes at the orbifold.

These fractional branes are identified with dyons of the field theory whose magnetic charge

is a simple root of the algebra. The whole spectrum can be thought of as boundstates of a

finite number of these states. We have displayed these boundstates, and performed a study

of their domains of existence near the orbifold.

As already mentioned, a crucial step in our derivation of the orbifold point was that the

toric diagram was simplicial. As this is not the case for general N = 2 theories with matter,

it is not straightforward to generalize the kind of analysis we have performed here. The

blowdown limit can still be derived using the methods of [26], but it won’t be an orbifold.

On the mirror side, there is a proposed Gepner model for SU(Nc) with Nf = Nc − 1

flavors [41], so one expects this case to present some simplification on the type IIA side

also.

Finally, on a more general level, one can ask what are the structures behind the spec-

trum of BPS states, both in string theory compactifications and in N = 2 field theories.

On one hand, we can consider the derived category [1], which is manifestly independent of

vector moduli space. Another possibility is to consider the algebra of BPS states: a univer-

sal property of the spectrum of BPS states for any theory is that they form an algebra [42],

which depends on vector moduli space. In [42], the definition for the product of that alge-

bra was given in terms of a scattering process, and obvious phase space considerations force

an analytic continuation to complex momenta. In [17] , a slightly different interpretation

of the algebra of BPS states was presented: if the coefficient ck
ij in the algebra is not zero,

we say that φi and φj can form a boundstate φk, with φi being a subobject of φk. Notice

that the definition is not symmetric in ij.

In [17] the notion of algebra of BPS states was reformulated near orbifold points. The

results presented here could be then used to study the algebra of BPS states for field

theories. Take for instance N = 2 SU(2) SYM. Its spectrum is given by the Kronecker

quiver of (3.6), whose Schur roots correspond to the stable sheaves of P
1. Indeed, if we
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identify the rank of a sheaf in P
1 with magnetic charge and the first Chern number with

the electric charge, we see that the tower of dyons correspond to line bundles O(k) on P
1,

and the W+ corresponds to the skyscraper sheaf of length one, OP. We have the exact

sequence,

0 → O(n) → O(n + 1) → OP → 0

This can be read as saying that a [1, n] dyon and a W+ boson can form a [1, n+1] dyon,

with the [1, n] dyon being a subobject, but not the W+ boson. Notice that we can not

have the reverse exact sequence, as we can’t have an injective map from torsion sheaves

to torsion free sheaves. This means [42, 17] that the structure constants cn+1
n,W 6= 0 and

cn+1
W,n = 0. It would be very interesting to determine the algebra beyond this homologic

approximation, and elucidate its dependence on the coupling constant.
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